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a b s t r a c t

Automatic infographics generators employ machine learning algorithms/user-defined rules and visual
embellishments into the creation of infographics. It is an emerging topic in the field of information
visualization that has requirements in many sectors, such as dashboard design, data analysis, and
visualization recommendation. The growing popularity of visual analytics in recent years brings
increased attention to automatic infographics. This creates the need for a broad survey that reviews
and assesses the significant advances in this field. Automatic tools aim to lower the barrier for
visually analyzing data by automatically generating visualizations for analysts to search and make
a choice, instead of manually specifying. This survey reviews and classifies automatic tools and
papers of visualization recommendations into a set of application categories including network-
graph visualizations, annotation visualizations, and storytelling visualization. More importantly, this
report presents several challenges and promising directions for future work in the field of automatic
infographics and visualization recommendations.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As the demand for rapid analysis of visualization grows, there
s an increasing requirement to design visualization tools, which
llow users to efficiently generate visualizations. Shown in Fig. 1,
uthoring tools are increasingly towards automatic. The evolu-
ion of them can be divided into four steps. Firstly, program-
atic step for visualizing data includes imperative languages
nd libraries. Designers need to have an ability of program-
ing to get infographics, such as D3 (Bostock et al., 2011), Vega-
ite (Satyanarayan et al., 2016), ECharts (Li et al., 2018), and
isComposer (Honghui et al., 2018). These tools are designed for
sers who are familiar with coding and visualizations. Secondly,
isual building step for easy visualizations includes template
diting (iCharts (García et al., 2007) and RAWGraphs (Mauri et al.,
017), shelf configuration (Polestar (Pioch and Everett, 2006),
oyager (Wongsuphasawat et al., 2015), and Voyager 2 (Wong-

suphasawat et al., 2017)), visual building (iVisDesigner (Ren et al.,
2014), Data Illustrator (Liu et al., 2018), VisComposer (Mei et al.,
2018a), and Charticulator (Ren et al., 2018a)). These tools are
designed for users who are familiar with coding but not familiar
with visualizations. Users need to pre-conceive blueprints, then
interact with the system, such as clicking or dragging with vi-
sual items, to get more expressive and aesthetic visualizations.
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Fig. 1. Tools/systems for generating visualizations. Infographics are created with
a spectrum of tools automatically or manually.

Thirdly, the semi-automatic step is involved with few interactions
to efficiently obtain visualizations, such as SAGE (Roth et al.,
1995) and BDVR (Gotz and Wen, 2009). Lastly, automatic step
is designed for no-human involved tools to efficiently get visu-
alization recommendations, such as Text-to-Viz (Cui et al., 2019)
and Click2Annotate (Chen et al., 2010a). These tools are gradually
emerging for users who are not familiar with visualization or
coding.

Effective creation of infographics enables designers and an-
alysts to reduce tedious work, design successful strategies and
make informed decisions. Combining data contents with visual
embellishments, infographics can effectively deliver more mes-
sages in an engaging and memorable manner than tedious raw
data. However, it is difficult for users who are familiar with
visualizations to design expressed and aesthetic visualizations.
They need to understand visual encoding, data characteristics,
and common types of visualization. Even experts need to have
an idea about design target and take efforts to investigate data
ersity and Zhejiang University Press Co. Ltd. This is an open access article under
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Fig. 2. Three paths of automatic infographics and visualizations. Existing works are divided into three categories: (A) knowledge-based approaches; (B) data-driven
approaches; and (C) hybrid approaches.
analysis with kinds of attempts for designing an ideal visualiza-
tion. Furthermore, designers need to consider not only perceptual
effectiveness, but also visual styles when creating an infographic,
which is an inefficient process.

To address these challenges, automated infographics (Chen
t al., 2019; Cui et al., 2019; Wang et al., 2019b) have been
eveloped in recent years through a proper combination of ma-
hine learning/user-defined rules and visual elements. It does not
equire users to have expertise in visualization and can provide
sers with professional infographics.
The tool for automatically generating visualization requires

hat no or few human are involved. Mackinlay (1986) presented
he first widely accepted presentation tool that automatically
esigns efficient visualizations (such as bar charts, scatter plots,
nd connected graphs) of relational data. This is the foundational
nd inspiring study on the automated creation of infographics.
or automatically generating visualizations, they described two
hallenges: visual encoding for information and design standards
or visualizations. Later, Wang et al. (2019b) provided more spe-
ific challenges of automatic generation tools. The first challenge
s to extract features from datasets and organize characteristics
nto a meaningful ground truth. The extracted features should be
eliable and interesting, and the identified ground truth should be
eaningful and easy-understand. The second challenge is making
choice of proper visualizations that can illustrate the meaningful
tories.
Our motivations in conducting this survey are two folds. First,

e aim to review the latest developments of researches for semi-
utomatically or automatically infographics generating tools and
rovide a concise and comprehensive review of the field. How-
ver, researches and tools for generating visualizations in the last
ew years mainly focus on some narrow topics such as manu-
lly infographics (Ren et al., 2018a; Mei et al., 2018a). Several
urveys (Grammel et al., 2013; Mei et al., 2018b) for generating
isualizations published in the last few years mainly focus on
ome narrow topics of interactive tools. A comprehensive survey
hat reviews the research of semi-automatically or automatically
enerating visualizations is still absent. Second, this survey aims
o organize, classify, and compare recent researches to provide
critical assessment of the research and understand current

esearch trends. We organize and classify existing researches on
utomatically generating infographics and their applications.
The contributions of this paper are as follows. First, we discuss

xisting works on automated visualization design and recom-

endation generators that combine advanced technologies of
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machine learning and guidelines obtained from visual knowledge
researches. This paper presents a comprehensive survey of the
developments of automatic infographics. Second, it provides a
novel classification of the results. We categorize these systems
into knowledge-based, data-driven, and hybrid automatic design
tools for visualization. In addition, we described applications
of these tools. Third, it identifies new research challenges and
future work, which can help related researchers to enhance the
understanding of this field.

The structure of the paper is as follows. In Section 2, we
categorize the approaches into three parts: knowledge-based,
data-driven, and hybrid visualization design tools. Theories are
discussed and demonstrated in an intuitive manner. In Section 3,
4, and 5, we comprehensively and detailly describe paper classi-
fications and applications using knowledge-based, data-driven or
hybrid approaches respectively. Besides, we analyze the research
challenges and trends in the specific applications. Section 6 re-
view the researches of evaluating infographics and infographics
generating tools, which are informed for invalidating automatic
infographics generating tools. In addition, some considerations
are summarized for future researches in this field. Finally, Sec-
tion 7 concludes the paper and outlines future challenges in this
research domain.

2. Automatic infographics, models, and framework

Data visualization technology has developed rapidly, and a
large number of visualization methods and technologies have
appeared. However, choosing a suitable visualization expression
requires not only exploring data but also understanding the char-
acteristics of expression and structure of infographics. This makes
it difficult for non-domain users to design appropriate visualiza-
tions.

Automatic visualization design focuses on generating visual-
izations with no or few human-involved operations. This can
promote the design of effective visual encodings, enhance rapid
visual exploration, and facilitate efficient visual analysis. Mackin-
lay (1986) proposed a foundational idea of codifying Bertin’s
semiology of graphics as algebraic operators to automatically
create graphical visualizations for ‘‘node-link’’ data. Casner (1991)
extended this work by comparing and quantifying visualization
alternatives via a series of metrics on generated visualization
depending on tasks. Goldstein et al. (1994) added alternative
types of visualizations, quantify alternatives, and then rank the

results of effective and expressive recommendations. However,
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Fig. 3. Two kind of types of automatic generator. (A) Workflow of data-driven automatic generator in VizML (Hu et al., 2019) (B) Workflow of hybrid automatic
generator for visualizations in DataTone (Luo et al., 2018).
their work did not consider or discuss in the aspects of user
knowledge for their automatic visualizations. Chen et al. (2019)
then proposed an idea of deconstructing and reconstructing in-
fographics by employing user-defined rules and data-driven con-
straints.

As shown in Fig. 2, after reviewing the previous work, we
categorized the models into three kinds for creating visualization
tools. Fig. 2(A) is a data-driven visualization model (Hu et al.,
2019; Cui et al., 2019), Fig. 2(B) is a user-defined rule to establish
a visualization, Fig. 2(C) is hybrid model (Luo et al., 2018; Gao
et al., 2015) that incorporates data-driven and knowledge-based
models.

For the first data-driven model, a natural way to capture
human perception is by learning visualization examples. Then,
some researchers proposed machine learning-based approaches
(Hu et al., 2019; Cui et al., 2019). They employed machine learn-
ing techniques and visual embellishments into the generation
of visualizations. Firstly, visual elements are deconstructed and
labeled from infographics. Then, a machine learning model is
trained to predict visualizations, and visual elements are re-
constructed to create recommendations. Hu et al. (2019) intro-
duced a framework to depict the process of building the data-
driven model for automatic creation of information visualizations.
Fig. 3(A) illustrates the entire process of building the data-driven
model. The process starts by collecting infographics and then
extracting visual components from infographics. Thus, a raw vi-
sual corpus with associated descriptions is obtained. After that,
models are trained to predict potential visualizations, and lay-
out constraints are defined for generating visualization alterna-
tives. Finally, layout algorithms are proposed for quantifying and
ranking visualization recommendations for users to select.

The second rules-based model is mainly involved with user-
defined rules based on certain obtained experiences of the design
of the visualization. Using machine learning models as black-
boxes has shortcomings such as the lack of interpretability. Thus,
some researchers proposed user-defined rules to make constraints
for improving the results of visualization recommendations.

Meanwhile, for the third hybrid model, data-driven models
together with knowledge-based models can often lead to bet-
ter analysis results. Therefore, the combination of data-driven
models and knowledge-based models are the ideal method for
building models of automatically generating visualizations. Luo
et al. (2018) also introduced a pipeline to describe the steps of
building the hybrid model. Fig. 3(B) illustrates the process of
building the hybrid model, which consists of two parts: offline
part and online part. For the offline part, two machine learning
models are trained. One is a decision tree to determine whether
provided data and a reference visualization is true or false, and
the other is a learning-to-rank model that ranks visualizations.
For the online part, all possible visualizations are generated to

qualify and rank visualization recommendations.
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In summary, the establishment of these models mainly in-
volves the following two challenges. The first challenge infers
to infographics collection, visual items identification, and visual
items labeling. The second one concerns the study on user-
defined rules and algorithms of automatically generating vi-
sualization. Fig. 4 describes the summary of some automatic
visualization generators.

3. Data-driven automatic visualizations

This section mainly introduces applications of data-driven au-
tomatic visualizations, which use data-driven constraints or ma-
chine learning techniques to predict user-intend visualizations.

3.1. Statistical automatic visualizations

Most common infographics in our daily life are statistical
charts, such as pie charts, bar charts, line charts, etc. Many re-
searchers have proposed corresponding methods and tools to
automatically generate statistical charts. Therefore, this section
mainly introduces layout methods, automatic tools, and existing
challenges from two aspects of data-driven rules and machine
learning models.

The former is involved with two aspects. One is user-defined
constraints, which is based on the characteristics of data, to auto-
matically generate all possible visualizations. The other is quality
metrics to quantify and rank all generated visualizations. Saket
et al. (2018) implemented a research to verify the effectiveness of
most common type of visualizations (see Fig. 5) through general
data analysis tasks using two kinds of data (cars dataset and
movies dataset). When factors (time, accuracy and preference) are
taken into consideration, the result are revealed and convergent
to five guidelines: using bar charts for finding groups, using
line charts for finding correlations, using scatterplots for finding
anomalies, avoiding using line charts to precisely find the value of
a specific data point, and avoiding using tables and pie charts for
relational information. Based on the above results, They created
a decision tree as a predictive model and developed Kopol1 as
a recommender to create visualization alternatives when given
tasks and the types of dimensions.

Kim and Heer (2018) accomplished an research to estimate
subject performance across kinds of tasks and characteristics of
datasets. During their experiment, users are asked to conduct
tasks for making a combination of features and making visual-
ization alternatives a rank. Based on the result of their research,
they developed a model for a dozen of scatterplots encodings,
the types of target, and the cardinality and entropy of some data
dimensions.

The latter employs machine learning models to predict all
possible visualizations. Key et al. (2012) proposed Vizdeck for the
disorganized relational dataset.



S. Zhu, G. Sun, Q. Jiang et al. Visual Informatics 4 (2020) 24–40

b
r
c
D

N
i
l
m
c
v
g

p
s
e
i
c
c
o
t
T
c
d
V
t

g

Fig. 4. Summary of certain automatic visualization generators. Bar(B), Line(L), Pie(P), Scatter plot(S), and Histogram(H) are common visualizations that most automatic
tools can generate. ‘‘Ranking’’ means ‘‘Ranking Support’’. Systems/tools support kinds of algorithms to rank visual or textual presentations.
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It is the first automatic system to recommend visualizations
y training a model, which learns the correlations among data
ecords and properties of visualization to predict user-preferred
harts. Zhe et al. (2018) then took a further step and proposed
ataSite by concentrating on continuous computation from a

library of automatic algorithms. Srinivasan et al. (2018) intro-
duced Voder, which use a series of statistical functions to combine
natural language generation techniques into their system. Dibia
and Demiralp (2019) presented Data2Vis, which use Recurrent
eural Network to automatically translate JSON-format datasets
nto visualization specifications. This approach combined with
ong short-term memory to created an end-to-end generation
odel, which is trained with about 4300 visualization examples
reated in Vega-Lite (Satyanarayan et al., 2016). Fig. 6 shows
isualizations examples, which are generated by Data2vis when
iven race dataset.
However, it is a critical challenge for extracting and inter-

reting visual elements from the diagrams. To address this is-
ue, Battle et al. (2018) proposed an approach for automatically
xtracting visualizations from the Internet and describing visual-
zations with annotation. From the collected visualizations, most
ommon types of visualizations are bar charts, line charts, scatter
harts, and geographic maps. Thus, they extract SVG-based graphs
n the web and automatically classify and describe them by
ype. Based on this approach, Hu et al. (2019) introduced VizML.
he model are trained via 1000,000 dataset-visualization pairs
ollected from public visualization communities, which were or-
ers of magnitude larger than that of Data2Vis and DeepEye.
izML provide a importance measurement of interpretation for
he characteristics and integrated it into visualization interfaces.

Above techniques can automatically generate common info-
raphics, there are some challenges:

• Scalable methods for collecting and labeling training data.

It is a lack of public and comprehensive visual primitive
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library. This challenge involves not only the identification
and extraction of items from a large number of infographics,
but also the labels and description of visual items, which
may express different meanings in fields.

• Lacking interpretability and explainability of machine learn-
ing models. The interpretability combined with the user-
defined rules can further improve the quality of visualiza-
tion recommendations.

.2. Automatic annotations

Annotation acts an increasingly significant role in helping
eople to understand the chart and expressing information from
esigners. It has been widely used in a variety of applications such
s efficient analysis of assisted story-telling (Bylinskii et al., 2017),
rror detection (Grammarly, 2012), and classification (Júnior et al.,
017). Annotations visually point to salient data characteristics
r visual elements. This section reviews automatic data-driven
nnotations while knowledge-based annotations can be seen in
ection 4.2.
A lot of work uses various methods to achieve the purpose

f automatic annotation. Kandogan (2012) presented a workflow,
hich mainly includes: visual feature detection, feature rank-

ng, and generating annotations. Lai et al. (2020) then proposed
comprehensive workflow for automatic annotation, which is

nspired by the process of manually annotating. The workflow
onsists of four parts: object detection for identifying visual enti-
ies and visible texts in the chart, NLP for parsing the description
o generate queries for the described entities, annotation for
ulfilling queries to anchor each sentence to locations of cor-
esponding image, and describing charts. The process of auto-
atically annotating involved with automatically identifying and
escribing/highlighting key visual elements (Kandogan, 2012).
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Fig. 5. (A) General types of visualizations used in Saket et al. (2018), such as scatterplot, bar chart, line chart, pie chart, and table. (B) Correlations between
isualization types across tasks and performance metrics.
Fig. 6. Visualization alternatives generated by Data2vis.
A lot of work uses various techniques to achieve the purpose
f automatic annotation. Some researchers use common statistic
ethods to automatically identify and extract significant infor-
ation from data. Kandogan, 2012 computed clusters, outliers
nd trend in point-based charts. Then special points are auto-
atically highlighted and labeled. Bryan et al. (2016) presented

emporal summary images, which provide automatic annotations
o recommend data points of interest for three type of data
ttributes: numerical vectors, storylines, and alluvial diagrams.
28
Fig. 7(A) illustrates the approach of finding points of interest.
Then, they defined the importance calculation of each annota-
tions’ dimension and points of interest. Based on this function,
the importance of all possible annotations are quantified, filtered,
and ranked. Finally, they applied an existing kernel density-based
algorithm to place and display annotations. Fig. 7(B) and (C) show
the examples of Temporal Summary Images (TSIs)

Kong and Agrawala (2012) used different machine learning
models to extract graphical marks aiming at various charts. To
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Fig. 7. (A) An approach of finding points of interest from time-series data, the characteristics of a vector are extracted by computing special changes, such as sharply
increased point and decrease point. (B) An example of TSIs after employing numerical vectors method. (C) An example of TSIs after employing alluvial diagram
method.
create most graphic overlays, users only need to know the visual
marks and axis attributes of the encoded data, and do not need
to access the underlying data values. Therefore, they extracted
the features and marks in the chart through a combination of
automatic extraction and semi-automatic extraction, then they
generated some notes (reference structures, highlights, and sum-
mary statistics). However, the system only considers two kind of
visual elements(marks and axis). This may generate the opposite
result when a chart is combined with many visual elements.
Júnior et al. (2017) defined the design space (annotation form and
annotation target type) to design and implement ChartAccent.
Bylinskii et al. (2017) proposed a computational system, which
can automatically produce various textual and visual hashtags
when an infographic is inputted. They scraped above 63,000 static
infographics from the visual website, and each of them is man-
ually categorized, labeled, and described. They further merged
redundant tags to obtain a dataset with hundreds of tags. The
method mainly consists of two parts: predicting the text mark of
the information map and locating the most representative visible
area. Text information is automatically extracted from the infor-
mation map and convert it into a 300-dimensional word2vec rep-
resentation. This mean word2vec representation was fed into two
single-hidden-layer neural networks for predicting the category
and tags of each infographic.

More recently, researchers use machine learning to create an-
notations for visualizations. These approaches reduced the user’s
cognitive burden. Liu et al. (2020) proposed AutoCaption, which
employs the GAN scheme embedded with Res-Net generator
to recognize the visual significance of SVG-based visualizations.
Meanwhile, they used a common statistic-based method to iden-
tify the correlations among visual elements. Lai et al. (2020) used
a Mask R-CNN model to identify and extract visual elements
in the target visualizations, along with their visual properties.
Corpus consists of three kind of types: bar charts, pie charts,
and scatterplots. They are all filtered after randomly collected
from the web. For each type, Two-thirds of the infographics are
assigned to train, with the rest are utilized to be validated. Fig. 8
shows the examples of this work.

Above techniques satisfy the automatic annotation, some chal-
lenges are remained as following:

• A short of public corpus. Infographics are searched and col-
lected online and then labeled manually, which is a tedious
and time-consuming process.
29
• Identifying the wrong features of infographics. Machine
learning technology will inevitably suffer from recognition
deviation, which will result in errors in automatically anno-
tated objects.

• Recognizing semantic incorrectly. Existing semantic recog-
nition technology will inevitably have errors, which will lead
to the incorrect expression of the meaning of automatic
annotation.

3.3. Graph and network visualizations

Graphs can be visually represented by node-link diagrams,
matrix chart, or hybrid visualization of node-link diagrams and
matrix chart (Sun et al., 2013). Graphs are widely used to il-
lustrate the correlations among data instances. Thus, researchers
focused to study the approaches of generating a graph to visualize
data more intuitively. This helps users to understand and explore
kinds of network data such as complex social media data.

Graph drawing methods are often based on various layout
principles: from spring-embedder-based layout algorithms (Frick
et al., 1994) and dimension-reduction-based techniques (Gansner
et al., 2004) to energy-based approaches (Jacomy et al., 2014).
Users need to acquire various parameters to achieve the de-
sired graph drawing. Nowadays, Some researchers devoted to
employing machine learning to the creation of network visualiza-
tion (Moldovan et al., 2018). Some literature had been published
for reviewing graph drawing with the machine learning mod-
els (dos Santos Vieira et al., 2015). Interested readers can refer
to this complete survey for more details about past researches.
This subsection reviews only recent researches.

There are a lot of approaches based on nonlinear dimen-
sionality reduction and machine learning models, which can
automatically encode complex graph construction into simple
low-dimensional embeddings. Such as matrix factorization-based
algorithms (Ou et al., 2016) and graph neural networks ap-
proaches (You et al., 2018).

Hamilton et al., 2017 then developed a framework to unify ex-
plain the advances and further strengthen some significant work.
Traditional machine learning methods depend on user-defined
rules to identify and extract features of graphs to encode the
structural information. Kipf and Welling (2016) proposed a latent
variable model for graph-structured data with a decoder and loss
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Fig. 8. Annotated cases in Lai et al. (2020). The charts in (A) and (C) visually illustrate examples with property-based descriptions. The chart in (B) visually presents
case with text-based descriptions.
Fig. 9. An illustration of graph-LSTM-based model architecture in DeepDraw-
ng (Wang et al., 2019a).

unction similar to the graph factorization method. They validated
he usefulness with an effective result on a link prediction task in
itation networks.
Wang et al. (2019a) proposed a graph-LSTM-based approach,

eepDrawing, which can automatically analyze the structure of
data graph and generate a graph drawing when the graph/
network structure is input. The structure of model is shown in
Fig. 9. Commonly used LSTM architecture is usually a linear chain,
and one of their main limitations is that they can only model
sequence data. However, for graph drawing, the dataset of input
is usually a structure of graph/network, rather than a linear chain.
The layout location of one point in the graph depends on all other
points directly or indirectly connected to it. Using the general
LSTM model, this dependency information can still be weakened
or lost, especially for LSTM units that are far apart from each
other. This model adds direct connection among LSTM units to
model the topology of the input network.

Then, a linear chain among adjacent units of a hierarchy LSTM
s utilized to propagate the overall state of the previous graph
odes to the following nodes along the chain. The original graph
s converted into a series of nodes as input data of a model, each
STM unit takes a node’s feature vector as input to generate the
utput state of each node. The green arrows among the units
isually encode the solid edges in the graph structure, and the
30
dotted yellow arrows encode the ‘‘false’’ edges, which connect
adjacent nodes in the sequence of BFS ordered nodes. Considering
that the graph is usually not serial data, each of nodes should
be considered when trying to draw a graph visualization, since
subsequent nodes in the sequence will also affect the position of
the previous node in the actual graph drawing process. To better
simulate this interaction, they introduced reverse propagation by
simply reversing the direction of the link in forwarding propa-
gation. Then, the output results are combined of LSTM units in
forwarding and backward propagation and input into the feature
vector, which is further input into the fully connected layer to
generate the final two-dimensional coordinates of each node.

Employing a machine learning model to learn the layout rules
and aesthetic standards in drawing, graphs are automatically gen-
erated to help users get out of tedious operations on parameters
adjustment. However, there still remain some challenges:

• The diversity of users’ requirements results in a compli-
cated and difficult establishment of certain machine learn-
ing models. Thus, it is a difficult task to use the existed
machine learning techniques to train.

• The lack of interpretation. There is no information about
what graph layout aspects are learned by machine learning
model.

3.4. Automatic storytelling visualizations

Narrative visualization is a significant branch of visualization.
An increasing number of people attempt to visually describe
patterns such as news reporting (Satyanarayan and Heer, 2014).
Users not only need to explore data to find points of interest
but also require to have the abilities about relevant visualization
knowledge. Through various visualization attempts, proper visu-
alization is obtained. Therefore, it is a time-consuming process for
designers, especially for non-domain users to design an intended
narrative visualization. Thus, some experts proposed approaches
for automatically generating storytelling visualization (Chen et al.,
2019; Gao et al., 2014). Visually telling a story usually demands
to choose an order in which to illustrate visualizations, such as
time-series and spaces.

Telling stories on geographic map is one common approach.
Information can be expressively and effectively conveyed on map.
Gao et al. (2014) presented NewsView, an automated news vi-
sualization interface that generates interactive, annotated maps
without requiring professional designers. NewsView can provide
customized geographic visualizations for news, which is driven
by 1.5M location-related articles from the New York Times, table
database, and table crawled databases. They follow three criteria,
which are general to other types of data. The first is a variable-to-

article similarity, which is devised to calculate pointwise mutual
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Fig. 10. An application of NewsView (Gao et al., 2014). It automatically depicted a custom annotated thematic data given an article.
Fig. 11. An automatic approach (Chen et al., 2019) to extract an architecture of timeline template from a timeline infographic and extend the timeline visualizations
with an updated dataset. (a) The input of an infographic about timeline, (b) Extraction of visual elements and text from the timeline infographic; (c) Identification
and extraction of the architecture from the timeline infographic; (d) Generation of a new timeline infographic.
information for identifying the best variable for a thematic map.
The second is annotation relevancy as captured by cosine simi-
larity. The third is visual interestingness as captured by Moran’s
I. This ranking technique makes a choice of the visualizations to
maximize the relevance of annotations and article. Fig. 10 shows
an application of NewsView, which illustrates an article about the
results of a nationwide evaluation of educational performance.

The timeline is another popular narrative method. Informa-
tion can be expressively and intuitively expressed with a time
sequence. Shown in Fig. 11, Chen et al. (2019) proposed an
automatic approach of extracting an extensible timeline template
from a bitmap image and generating a new timeline infographic
with renewed data. The approach can be divided into two parts:
deconstructing bitmap timeline infographics and reconstructing
extensible template. To deconstruct bitmap timeline infographics,
they extended ResNeXt (Xie et al., 2017) with Feature Pyramid
Network (Lin et al., 2017). This parts is developed from the
global and local perspectives respectively. Globally, they em-
ployed ResNeXt to extract features of image within 2048 chan-
nels, and used two fully connected layers as class headers to
predict type and orientation of a image. Locally, they defined six
type of elements and performed sliding windows (Lampert et al.,
2008) to detect the detailed elements. To reconstruct extensible
template, They eliminated repeated and fixed the failed identifi-
cations with non-maximum merging and redundancy recovery.
31
They reused and refreshed the collected text and visual items
with DL GrabCut and text recognition techniques. They incorpo-
rated about 4300 timeline images and collected real-world about
400 timeline pictures online. After training the model, they used
cases to validate the effectiveness of this approach by automati-
cally extracting the structure and content of timeline charts and
create the timeline chart visualization.

Chen et al. (2020) extended the Vega grammar and proposed
PapARVis Designer, which generates static and virtual charts to
augment visualizations. By comparing the similarities and dis-
similarities of dataflow between virtual design and augmented
static charts, this tool automatically verifies the dataflow of visual
design and provides hints for debugging invalid visual encodings.

After reviewing works of automatically creating storytelling
visualizations, we find the following limitation and future direc-
tions:

• Limitation: It is difficult to select a proper machine learning
model to train. Furthermore, it is the challenge of collecting
comprehensive infographic datasets as the train data.

• Future work: Extending automated storytelling visualization
design, such as geographic infographics generation. Inter-
pretation for automated visualization of the model.
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.5. Summary

In this section, we review and discuss the work of automat-
cally creating visualizations based on data-driven approaches.
ost of these works use machine learning models to automat-

cally generate infographics. Some studies need to pre-define
esign constraints based on the characteristics of data, rank vi-
ualizations based on quality calculation, and recommend visual-
zation authors to make a choice of visualizations.

These approaches or tools can automatically generate and
ecommend users high-quality visualizations. Users do not need
o understand the relevant knowledge of information visualiza-
ion to effectively obtain visual design. Nevertheless, there are
till quite a few research challenges that must be addressed.
ne challenge is involved with the establishment of a high-
uality visual coding corpus. Although the existing tools (Zhang
t al., 2020; Poco et al., 2017) have the ability to extract vi-
ual elements from the diagram, the wrong description of visual
lements remains to be addressed. An additional challenge is
nterpretability issues of approaches based on machine learning.
he interpretability of machine learning can be integrated with
ser-defined knowledge to further enhance the expression and
ompleteness of automatically generated visualization, which are
he most important conditions for visualization.

. Knowledge-based visualizations

This section mainly introduces knowledge-based automated
isualization design techniques, which use a series of user-defined
onstraints and visualization design constraints to guide aesthetic
nd expressive visualization recommendations (Bordegoni et al.,
997).

.1. Traditional visualization recommendations

This section mainly introduces automatic tools on generating
ommon visualization recommendations such as line chart and
ar chart based on perceptual measurements.
Some experts proposed semi-automatic tools (such as SAGE

Roth and Mattis, 1990, 1991) and Sagetools (Roth and Mattis,
991) or framework (Goldstein et al., 1994) to decrease the te-
ious operations. Microsoft Power BI’s ‘‘Quick Insights’’ template,
ableau’s ‘‘Explain Data’’ feature, and Google Sheets can also
rovide automatic designs of visualization.
Mackinlay et al. (2007) proposed Show Me, which has been

ncorporated automatic presentation into Tableau. Show Me can
utomatically generate small multiple views and user experience
or automatic presentation functionality. Fig. 12 shows the alter-
ative visualizations. MashupAdvisor (Elmeleegy et al., 2008) and
ehavior-driven visualization recommendation(BDVR) (Gotz and
en, 2009) can automatically provide users recommendations
hile users requested an issue query. BDVR defined four types:
canning, flipping, swapping, and drilling-down, based on users’
ehaviors. The algorithm detects patterns and provides users the
ntended visualizations. Wills and Wilkinson (2010) presented
utoVis, which use statistical criteria over data dimensions and
ecords in recommending and ranking visualizations.

More recently, researchers have proposed automatic design
ngines for more expressive and effective visualizations design
Luo et al., 2018; Wang et al., 2019b). Voyager (Wongsuphasawat
t al., 2015) and Voyager 2 (Wongsuphasawat et al., 2017) are the
ixed-initiative systems. Voyager proposed series of considera-

ions to guide the charts design of recommendations. Voyager 2
hen synthesized interactive and automated visualization spec-
fications to assist analysts in overall exploration and focused
nalysis. Ke et al. (2013) proposed SEEDB, which has the ability
32
to automatically identify and recommend to the analyst visual-
izations after users input a query. The query is conjunction with
a variety of existing database systems, and the system supports
analysts three types of mechanisms to query issues: SQL query
for domain users, casual query that can be transformed into
formal query with a query builder tool, and pre-defined query
for analysts unfamiliar with SQL. Wongsuphasawat et al. (2016)
then proposed CompassQL, which can be able to generate a set
of visualization recommendations through a set of enumeration
rules combined with approaches towards choosing, ranking, and
classifying visualizations.

Wang et al. (2019b) presented DataShot, which generates fact
sheets automatically from tabular data. Considering that a high-
quality fact sheet needs to be thought-provoking, insightful, infor-
mative, easy-understand, and aesthetically pleasing. They identify
a common qualitative analysis (such as infographic structures,
presentation layout, fact types, and visualization styles) for fact
sheet designs during the study. They proposed a fact sheet auto-
generation workflow, which consists of extracting data fact, com-
positing data fact, and synthesizing presentation, based on a
formative survey. For data extraction, it involved the computation
of importance score (significance score, impact score, and context
score) of each data fact. For data fact composition, the topic
of a fact sheet is extracted and ranked, and a density-based
top-n algorithm is defined to measure the dissimilarity between
two data facts. For synthesizing presentation, it includes a fact-
visual mapping model building, fact description generating, fact
sheet layout, and fact sheet styling. Fig. 13 shows the generated
examples by DataShot.

4.2. Automatic annotations

Section 3.2 has already described several applications of an-
notation. This section mainly introduces some applications of
automated annotation based on user-defined rules,

Some experts focus on the application of automated annota-
tions for error warning, such as the universally used Microsoft
Office Word for automatically checking errors in the text. The
designers create the analyze tree based on the grammar rules
of various language types. Shown in Fig. 14(A), Microsoft Office
Word uses red wavy lines to indicate spelling mistakes, uses green
wavy lines to make a notation of grammatical errors, etc. This
work greatly improves work efficiency. Inspired by the red wavy
underline that indicates spelling mistakes, Hopkins et al. (2020)
then introduced VisuaLint using a series of heuristics for five
kinds of errors: dual-axis charts with various scales, perceptually
invalid color encodings, missing legends, truncated axes, and
inexpressive size encodings. Fig. 14(B) highlights three examples
of error annotations.

Some work is designed for helping users to understand con-
tents such as Graphoto (Park et al., 2018). Mittal et al. (1998)
extend the automatic graphical presentation systems to create
descriptive captions in natural language, to facilitate users to un-
derstand the information expressed in the graphic. Click2Annotate
Chen et al. (2010a) and Touch2Annotate (Chen et al., 2010b) are
semi-automatically annotations generator. Click2Annotate (see
Fig. 15) is designed for an insight management solution, which
consists of several parts: insight browsing and retrieval, insight
network, insight sharing/exporting in collaborative visualization,
and visualization recommendation and notification. Uses can
obtain high-quality annotations with a ‘‘typing free’’ annotation
approach for multi-touch system Touch2Annotate.

Based on previous work Kandogan (2012). Hullman et al.
(2013a) presented Contextifier, which use information source to
defined annotations as observational and additive. Layout algo-
rithms for generating informed annotations were informed by



S. Zhu, G. Sun, Q. Jiang et al. Visual Informatics 4 (2020) 24–40

(

o
v

a
s

Fig. 12. The Ranking of alternative visualizations of Show Me (Mackinlay et al., 2007). Users can iteratively make a choice of visualization recommendations.
Fig. 13. Four examples of DataShot. (A) illustration of the events of shark attack happened in swimming activity; (B) an example of the sales status of sports cars;
C) an example of the sales status of manufacturer BMW; (D) illustration of the winning number of gold medals in the Summer Olympics from 1896 to 2012.
Fig. 14. (A) An example of using Microsoft Office Word for error notification. The red wavy lines indicate spelling mistakes while the green wavy lines make a notation
f grammatical errors. (B) Three kind of examples in VisuaLint represented inexpressive size encodings (left), missing legends (medium), and dual-axis charts with
arious scales (right) respectivelly.
study of professionally designed visualizations when it takes
ome related design rules into consideration. Considerations are
33
visual salience, contextual connection, and identification of sig-
nificant events in the company’s history. Contextifier consists of
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Fig. 15. A scenario where a user annotates an outlier using Touch2Annotate, which involves three steps: (A) selection of the outlines by drawing a rectangular
boundary to; (B) generation of an annotation; (C) dragging of items into the annotation; (D) final annotation.
Fig. 16. An annotated visualization are generated by Contextifier (Hullman et al., 2013a).
our main components: a news article corpus, a query generator,
n annotation selection engine (consisting of three feature gen-
rators and an integrator), and a graph generator. The workflow
f the system starts from generating a query and matching it
ith the full-text index and the obtaining stock series. Then
he feature generator calculates the feature from the text or
tock sequence, and the feature integrator is used to integrate
he obtained feature and use sorting to select notes, and finally
se notes and stock sequences to generate line charts. Fig. 16
llustrates an example of annotation results. However, Contextifier
s only suitable for the visualization of stock sequence data. Thus,
he scalability problem of this work needs to be solved. Gao et al.
2014) then presented NewsViews, which can generate annota-
ion content from a news corpus like Contextifier but can also
upport observational annotation of outliers (such as minimum
alue and maximum value). NewsViews is designed for working
ith any kind of articles and appropriate data of various types
uch as georeferenced data and time series. Kong et al. (2017)
efined annotations as visual cues. They extended and studied
he basic visual annotations, and categorized them as internal
ues(including transparency, brightness, and magnification) and
xternal cues (including colors). Besides, they performed a user
tudy and find that external cues increase visual confusion rather
han simplify images, while internal cues can weaken redundant
nformation. Therefore, the effect of internal prompts is usually
etter than external prompts. Thus, future automated annotations
an choose richer and more beautiful visual cues.
34
4.3. Automatic storytelling visualizations

This section focuses on knowledge-based storytelling visu-
alization using automatic or semi-automatic techniques. It is
common that Google News Timeline and Google Finance present
automatically-generated visual storytelling of articles. These tools
usually using simple icons, pictures and shot abstract for story-
telling.

There are a lot of work for storytelling visualization by adding
restrictions to automatically visualize specific types of data (Lu
et al., 2020). Hullman et al. (2013b) proposed a graph-driven
technique, which has the ability of automatically distinguishing
the most effective sequences from a set of visualizations. This
approach included defining data attributes for transition labeling
and consistency maintaining. They employed an algorithm for
identifying useful sequences to minimize local (visualization-
to-visualization) changes of transitions. Attractive visualizations
then were automatically sorted in the design process to help
users make a structure decision in creating narrative visualiza-
tions. From a structural perspective, they implemented a quali-
tative analysis of forty-two visualization examples on explicitly-
guided professional narrative. The result finally demonstrated
that details narrative sequencing can be systematically
approached in visualization systems.

Contextifier, which has been described in Section 4.2, auto-
matically generates annotated visualizations to intuitively tell a
story from a given article. Based on these previous work (Hullman
et al., 2013a,b; Amini et al., 2015), Amini et al. (2016) presented a

data-driven approach for semi-automatic narrative visualizations,
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Fig. 17. A video example of same sex marriage via web-based tool DataClips (Amini et al., 2016).
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alled DataClips, an authoring tool are designed for lowering the
arriers to generating data videos. Non-experts can use DataClips
o generate story-telling videos such as an illustration in Fig. 17.

Some researchers have made some progress on animated tran-
itions for photos storytelling. Based on the previous work on
uman recognition (Chellappa et al., 1995) and representative
hotos selection (Itti et al., 1998), Wen et al. (2012) developed
n online comic composition interface, called Pomics, which can
emi-automatically create continuous comic pages for further
efinement after users take photographs of trips or social events
s input. A similar idea was adopted to illustrate transitions
f gaming behavior in automatic comics-based storytelling sys-
em Chu et al. (2014). Then, Bach et al. (2016) develop graph
omics for storytelling and present a system, called DynaVis, to
resent and explain temporal changes in networks. They pro-
osed several guidelines for the design of graph comics, the first
tep is collecting diagrams, related literature, and pictures within
omics to extract architectures of typical comics and reconstruct a
ew architecture. the second step is finding visual encodings that
ould represent graph objects, their properties, and the possible
ariations which they may undergo. the third step are principle
esign for denying what kind of visual marks or attributes should
e used. the next step is creating comics, discussing with domain
xperts, and reading study.
Meanwhile, there are also efforts for exploring in other type

ata visualization for automatic storytelling (Kim et al., 2017;
ing et al., 2019), and animated narrative visualization for video
Wang et al., 2016), and time-varying data visualization (Li et al.,
010).

.4. Graph and network visualizations

There have been many years of research on the visualiza-
ion of automatically generated network-graphs. From simple
raph generation (Marks, 1990, 1991a,b; El-Said et al., 1997)
o complex social media networks Chen and Neill (2014), re-
earchers have been devoted a lot of time in layout algorithm
ptimization (Kosak et al., 1994; Henry and Fekete, 2006) and
ata visualization. This section introduces some classic automatic
reation of graphs based on experts’ knowledge.
GraphViz Ellson et al. (2001) and Gephi (Bastian et al., 2009)

re the most common tools for drawing network-graph auto-
atically, which incorporates a set of aesthetic criteria and ap-
ly layout algorithms for finding aesthetically pleasing network

isualizations. v

35
Early work by Kosak et al. (1994) described the rule-based
pproach for the layout of network diagrams. They generalized
he challenges of network-diagram layout takes perceptual or-
anization consideration, which can be categorized into three
omponents: syntactic validity, perceptual organization, and aes-
hetic optimality. Thus, they discussed two algorithms for these
hallenges. One is leveraging heuristic layout rules to incremen-
ally compute a layout, and another is finding the possible lay-
ut solutions. This layout algorithm plays a crucial role in the
evelopment of network-graph visualization. A lot of work is
erformed based on this work such as a popular book Di Battista
t al. (1999).
There are also some researches Duncan et al. (2010) using

urved edges to creating aesthetically-appealing, compact visu-
lization. Fig. 18 shows the different types of edges used in (Xu
t al., 2012). Fig. 18(B) aimed to automatically generate graph
isualizations using Lombardi drawing.

.5. Summary

This section reviewed and discussed the work to automatically
enerating visualizations based on knowledge-based approaches.
ased on the experience summarized in the visual design process
e.g., efficiency and expressiveness), researchers defined rules and
eclare layout constraints to recommend visualizations. Most of
he work is a semi-automated system, which integrates inter-
ction and automatic visualization specifications. For example,
ataShot requires users to choose the type of theme. Some re-
earchers have summarized the user’s behavior rules, detected
he user’s intentions, and recommended to the user visualization
harts. Existing knowledge-based work is categorized into four
lasses, namely, statistical visualization generation, annotation
eneration, network-graph generation, and storytelling visualiza-
ion generation. For these types of charts, notable advances have
een achieved. The existing paper or tools are based on one
r several layout rules, so the user-defined layout rules are not
omprehensive. Other types of designs are remained to develop
uch as specialized map designs.

. Hybrid visualizations

For data-driven systems/tools, designers use data-driven mod-
ls (such as machine learning models) to predict user-intend

isualizations. For knowledge-based systems/tools, designers use
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perceptual knowledge about visualization designs to defined con-
straints for automatically generating visualizations. Hybrid sys-
tems/tools incorporate both data-driven models and user-defined
constraints, which allow users to participate in the recommenda-
tion process and improve the knowledge-base constraints with
machine learning. This section mainly introduced hybrid visual-
ization design techniques (Luo et al., 2018).

Luo et al. (2018) presented DeepEye, which tackles three key
hallenges: visualization recognition, visualization quantifying,
nd visualization ranking. For the first challenge, they leveraged
decision tree to make a determination of good or bad for

isualizations. For the second and third challenges, an existing
achine learning Chris Burges et al. (2005) is performed, which is
idely used in information retrieval, natural language processing,
nd data mining. Thus, they make use of technique Chris Burges
t al. (2005) as black-box for training the model and normalized
iscounted cumulative gain Valizadegan et al. (2009) for ranking
isual recommendations. Visualization examples are generated
ia DeepEye given race dataset (see Fig. 19).
Moritz et al. (2019) proposed Draco, which is a constraints-

ased interface based on Answer Set Programming. The design
pace of a visualization model in this work is denied by a set of
mpirical constraints. The space of possible visualization specifi-
ations is classified with two types. One is a suite of aggregate
ules that species the domains of dimensions (mark, encoding,
hape, or text). Another set of integrity constraints that defines
ow various dimensions can interact with each other. Draco
mployed RankSVM and a learning-to-rank techniques Retrieval
2010) to learn preference model, They used a learning algo-
ithm that allows the model to learn soft constraint weights
rom ranked pairs of visualizations, and Draco used a simple
inear model over soft constraint weights to learn how to make a
alance among competing design rules.
Aiming at the proportion-related short text, Cui et al. (2019)

roposed Text-to-Vis to automatically generate infographics,
hich is combined with visual elements. Firstly, they collected
36
wo hundreds distinct infographics and manually deconstructed
bout 1000 individual infographic units, which is categorized into
our main groups: statistics-based, timeline-based, process-based,
nd location-based. Statistics-based infographics is about a half,
f which proportion is the most common type. For reconstructing
isual items, They take two parts into consideration: text space
nd visual space. For text space, they manually labeled visual
lements. Then, the model with CNN and CRF is trained on the
abeled dataset to identify and extract information. For visual
pace, they defined and constrained one infographic as several
ttributes: layout constraints, text description, visual graphic, and
roper color. Then, they synthesized the proportion-related input
tatements to predict users’ intention, and leveraged the visual
lements in visual corpus to combine all possible visualizations.
inally, each combined result of infographics was then evaluated
nd ranked by combining three weighted scores, which include
emantic score, visual score, and informative score. They applied
ord2Vec for evaluating semantic score, employed a method

of measure non-empty space for getting a visual score, imple-
mented an evaluation on the completeness of message delivery
for obtaining an informative score. This approach does not require
users a time-consuming and tedious authoring processor design
expertise. Infographic recommendations were automatically re-
constructed and ranked after inputting a proportion-related data
query.

6. Evaluations on infographics and visualizations

There are a lot of evaluations Harrison et al. (2015) on in-
formation visualizations and studies including surveys Grammel
et al. (2013) and evaluations Satyanarayan et al. (2019); Bateman
et al. (2010) and Wun et al. (2016) on interactive visualization
creating tools (Bigelow et al., 2016; Liu et al., 2018) and evalua-
tions. However, Most of them focused only on encoding channels

and data types, their evaluation criteria remain limited. In the
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Fig. 19. Charts are automatically generated by DeepEye.
xisting researches on automatic visualizations, it is a lack of
ork to fully evaluate the approaches of these tools.
After investigating the literature on two aspects including

nfographics designs (Xu et al., 2020; Bigelow et al., 2014; Saket
t al., 2017) and interactive design tools (Pantazos and Laue-
en, 2012; Ren et al., 2018b), we asked two questions: What
re the requirements for high-quality information visualization?
hat evaluation indicators do automatic visualization generating

ools need to satisfy? We summarize the some evaluation objec-
ives (Saket et al., 2018; Méndez et al., 2017) and considerations
s follows:

• Diversity-supporting of input datasets: A measurement is
required on diversity-supporting involved with types (such
as numeral data, textual data, images, and video),
format(such as JSON, CSV, and hybrid format) and con-
tent(such as timeline, geographic, and network) of data.

• The degree of automation during the process: Qualitative
or quantitative measurements are required to reveal how
intelligent the techniques are in terms of the procedure of
inputting datasets to outputting visualizations.

• The quality of output visualizations: Expressing informa-
tion correctly is the most important condition for automat-
ically generating a visualization. Meanwhile, other criteria
are also required, such as comprehensivity (Bateman et al.,
2010; Borkin et al., 2013), aesthetic (Harrison et al., 2015),
and creativity-supporting (Borgo et al., 2012).

• Learnability of models: Automatically generating visualiza-
tions needs to reduce the user’s learning input as much as
possible (Chen et al., 2009).

On the one hand, visualization designs need to be creative, on
the other hand, automated design tools are required to minimize
interactions involving users. Thus, the work faces an important
challenge. It requires to make a balance between creativity and
user interaction.

7. Conclusion and future challenges

This state-of-the-art paper reviews existing research in the
techniques of automatic visualizations. It introduces a compre-

hensive overview of many advances in automatically generating

37
visualizations to gain a better understanding of the cutting-edge
research in this field. This work is the first step towards review-
ing automatic visualizations in a novel and systematic manner.
Then, this report classifies existing work of automatic visual-
izations generating tools into data-driven and knowledge-based
approaches. Additionally, through the analysis and comparison
across related work, this report identifies the trends and re-
cent developments in automatic visualizations. Furthermore, we
divide the literature review into several broad application cate-
gories such as automatic storytelling generating, automatic an-
notation, and automatic network-graphs generating. Next, we
discuss and summarize the key challenges and several future
researches respectively.

Building comprehensive visual corpus. There is no complete
and public corpus in existing work. Building a corpus involves
the collection and description of visual elements. Most of the
corpus establishment in the existing work is downloaded from
the Internet and manually labeled. This work is heavy, tedious,
and inefficient. The method of automatically extracting (Tang
et al., 2017; Srinivasan et al., 2018) and describing the visual com-
ponents in the graph may be wrong, especially the professional
visual elements related to various field. Due to one visual element
may expresses kinds of meanings in different field, this is a great
challenge to collect and describe visual elements.

Specific visualizations for special kind of data. Specific tools
for automatic visualization recommendations may be more cre-
ative and comprehensive. However, visualization involves kinds
of data types, and existing automatic infographics are designed
for specific types of digital data, such as proportion, timelines, etc.
Automatic visualizations should be generalized to support more
types of information or other kinds of data, such as geographic
location data, large text data, video data, audio data, etc.

Building hybrid models of generating automatic visualiza-
tions. Building Models intends to a hybrid model, which in-
corporate knowledge-based rules and machine learning models
for more solid architecture. Although Draco trade-off compet-
ing design rules using a simple linear model. It is a significant
challenge to build one hybrid model, which involves with the
interpretability of machine learning and layout reconstruction of

visual embellishments. The interpretation of machine learning
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an strengthen layout algorithm, and layout rules of visual embel-
ishments can be able to prompt machine learning model. In addi-
ion, automated visualization model needs to have better mistake
olerance for complex data, and appropriate feedback regulation
s also a necessity. Combining interpretability of machine learning
odel and algorithmic decision-making models is a challenge for
utomatically generating information visualization.

upporting more kinds of efficient visualizations and trading-
ff between creativity and automation. Supporting more types
nd creativity of visualizations is another challenge. Existing au-
omatic visualizations are mostly typical visualizations such as
ar chart, pie chart, line chart, etc. However, more complex, cre-
tive, and interactive visualizations need to be supported. Existing
utomatic visualizations are mostly static visual recommenda-
ions, and generating interactive visualizations can be able to help
sers acquire more information.

uantifying automatic infographics tools. It is a great challenge
o assess the quality of automatic infographic tools, it can be
ivided into three parts: a measurement of diversity-supporting
f input datasets, the degree of automation of a tool during
he process of generating visualizations, and the quality of out-
ut visualizations. Firstly, measurement is required on diversity-
upporting involved with types, format, and content of data.
econdly, a qualitative or quantitative measurement is desired to
eveal how the techniques became more and more automatic and
ntelligent. Thirdly, Although there are many works on evalua-
ions for output visualizations, most of them are evaluated for a
ertain type of visualizations. Automatically visualization recom-
endation tools may generate multiple types of visualizations.
hus, it is a great challenge to define a synthesized algorithm for
uantifying automatic visualization generating tools.
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